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Supplementary Appendices

Recall that our proposed estimate ŜLM(t) = Ŝ(t | t0)Ŝ(t0). Let β̂ and β̂
∗

be the maximizers of the log

partial likelihood functions corresponding to the proportional hazards working models (2.3) and (2.4),

respectively. In addition, let β0 and β∗0 denote the limits of β̂ and β̂
∗
, respectively. Let Ŝ(β∗, t0) =

n−1
∑n

i=1 ŜZ′iβ
∗(β∗, t0), Ŝ(β, t | t0) = n−1

t0

∑nt0
i=1 ŜW′

iβ
(β, t | t0), and ŜLM(β∗,β, t) = Ŝ(β∗, t0)Ŝ(β, t | t0),

where Ŝu(β
∗, t0) = e−Λ̂u(β∗,t0) Ŝv(β, t | t0) = e−Λ̂v(β,t|t0), Λ̂u(β

∗, t0) and Λ̂v(β, t | t0) are obtained by

replacing β̂
∗

and β̂ in Λ̂u(t0) and Λ̂v(t | t0) by β∗ and β, respectively. Then Ŝ(β̂
∗
, t0) = Ŝ(t0),

Ŝ(β̂, t | t0) = Ŝ(t | t0), and ŜLM(β̂
∗
, β̂, t) = ŜLM(t). Furthermore, with a slight abuse of notation,

we define Su(β
∗, t0) = P (TLi > t0|Z′iβ∗ = u) = e−Λu(β∗,t0) and Sv(β, t | t0) = P (TLi > t|W′

iβ =

v, TLi > t0) = e−Λv(β,t|t0) Hence Su(t0) = Su(β
∗
0, t0) and Sv(t | t0) = Sv(β0, t | t0). Let ŴLM(t, t0) ≡

√
n{ŜLM(β̂

∗
, β̂, t)− S(t)}, which can be decomposed as

√
n{ŜLM(β̂

∗
, β̂, t)− ŜLM(β∗0,β0, t)}+

√
n{ŜLM(β∗0,β0, t)− S(t)}

and let ŴZ(t0) =
√
n{Ŝ(β̂

∗
, t0)− S(t0)} and ŴW(t | t0) =

√
nt0{Ŝ(β̂, t|t0)− S(t|t0)}.

Assumption A.1 Censoring, C, is independent of {TL,Z} given treatment assignment, G.

Assumption A.2 Treatment assignment, G, is independent of Z.

Regularity Conditions (C.1) Throughout, we assume several regularity conditions: (1) the joint

density of {TL,TS, C} is continuously differentiable with density function bounded away from 0 on

[0, t], (2) ZTβ∗0 and WTβ0 have continuously differentiable densities and Z is bounded, (3) h = O(n−v)

with 1/4 < v < 1/2, (4) K(x) is a symmetric smooth kernel function with continuous second derivative

on its support and
∫
K̇(x)2dx <∞, where K̇(x) = dK(x)/dx.
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Supplementary Appendix A: Variability of β̂ and β̂
∗

In Theorem S.1 we show that the variability of β̂
∗

and β̂ is negligible and can be ignored in making

inferences on Ŝ(β̂
∗
, t0), Ŝ(β̂, t|t0) and ŜLM(β∗0,β0, t).

Theorem S.1. Assume A.1, A.2, and Regularity Conditions C.1 hold. Then

√
n{ŜLM(β̂

∗
, β̂, t)− ŜLM(β∗0,β0, t)} = op(1)

Proof of Theorem S.1. We focus on Ŝ(β̂
∗
, t0) only as properties of Ŝ(β̂, t|t0) follow similarly. We will

show that the variability of β̂
∗

is negligible in the sense that
√
n{Ŝ(β̂

∗
, t0) − Ŝ(β∗0, t0)} = op(1). Let

F̂ (β, u) = n−1
∑n

i=1 I(β′Zi ≤ u) and F (β, u) = P (β′Z ≤ u). We estimate S(t0) = P (TL > t0)

by Ŝ(β̂
∗
, t0) =

∫
Ŝu(β̂

∗
, t0)F̂ (β̂

∗
, du). For ‖β2 − β1‖ ≤ ε = o(1), we then have

√
n{Ŝ(β2, t0) −

Ŝ(β1, t0)} =
√
n[I1+I2+I3+I4], where I1 =

∫
{Ŝu(β2, t0)−Ŝu(β1, t0)−Su(β2, t0)+Su(β1, t0)}F̂ (β2, du),

I2 =
∫
{Su(β2, t0) − Su(β1, t0)}{F̂ (β2, du) − F (β2, du)}, I3 =

∫
Ŝu(β1, t0){F̂ (β2, du) − F̂ (β1, du) −

F (β2, du) + F (β1, du)}, and I4 =
∫
{Ŝu(β1, t0) − Su(β1, t0)}{F (β2, du) − F (β1, du)}. Here we used

the fact that ∫
Su(β2, t0)F (β2, du) =

∫
Su(β1, t0)F (β1, du) = S(t0).

We next bound I1, I2, I3 and I4. To bound I1, we will show that

sup
u,β

∣∣∣∣
{
∂Ŝu(β, t0)

∂β
− ∂Su(β, t0)

∂β

} ∣∣∣∣= op(1). (A·1)

First, supu,β |∂Ŝu(β, t0)/∂β− ∂Su(β, t0)/∂β| ≤ C̃1 supu,β |∂Λ̂u(β, t0)/∂β− ∂Λu(β, t0)/∂β}|, where C̃1

is a positive constant and

∂Λ̂u(β, t0)

∂β
=

∫ t0

0

d
{
n−1

∑n
i=1 Ni(t)h

−1K̇h(β
′Zi − u)Zi

}
n−1

∑n
i=1 Yi(t)Kh(β

′Zi − u)
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−
∫ t0

0

d {n−1
∑n

i=1 Ni(t)Kh(β
′Zi − u)}

{
n−1

∑n
i=1 Yi(t)h

−1K̇h(β
′Zi − u)Zi

}
{n−1

∑n
i=1 Yi(t)Kh(β

′Zi − u)}2 .

Note that

n−1

n∑
i=1

Yi(t)Kh(β
′Zi − u)− E{Yi(t)Kh(β

′Zi − u)} =

∫
I(x ≥ t)Kh(s− u)d{F̂β(x, s)− Fβ(x, s)}

=n−1/2

∫
I(x ≥ t)Kh(s− u)dGFn(x, s;β) +O{n−1h−1 log(n)2} = o{(n−1/2 + (nh)−1)nε},

for any ε > 0, where Fβ(x, s) = P(Xi ≤ x,β′Zi ≤ s), F̂β(x, s;β) = n−1
∑n

i=1 I(Xi ≤ x,β′Zi ≤ s) and

GFn(x, s;β) is a Gaussian process such that

sup
x,s,β
‖
√
n{F̂β(x, s)− Fβ(x, s)} −GFn(x, s;β)‖ = O(n−1/2 log(n)2) almost surely.

The existence of such a Gaussian process, which is a time-transformed Brownian bridge, is ensured

by the strong approximation result of Tusnády (1977). In the last step above, we used the fact

that supu,β ‖
∫
I(x ≥ t)Kh(s − u)dGFn(x, s;β)‖ = o(nε) for any ε > 0 (Bickel & Rosenblatt, 1973).

Therefore, we have

sup
β,u

∣∣∣∣ n−1

n∑
i=1

Yi(t)Kh(β
′Zi − u)− E{Yi(t)|β′Zi = u}fβ′Z(v)

∣∣∣∣= O{(n−1/2 + (nh)−1)nε + h2}.

for any ε > 0. Similarly, for any ε > 0,

n−1

n∑
i=1

Yi(t)h
−1K̇h(β

′Zi − u)Z1i − E{Yi(t)h−1K̇h(β
′Zi − u)Z1i}

=n−1/2

∫
I(x ≥ t)zh−1K̇h(s− u)dGHn(x, s, z;β) +O{h−1n−2/3 log(n)d̃} = o(nε−1/2h−1),

where d̃ > 0, Z1i is the first component of vector Zi, Hβ(x, s, z) = P(Xi ≤ x,β′Z ≤ s, Z1i ≤ z)
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Ĥβ(x, s, z) = n−1
∑n

i=1 I(Xi ≤ x,β′Zi ≤ s, Z1i ≤ z) and GHn(x, s;β) is a Gaussian process such that

sup
x,s,z,β

‖
√
n{Ĥβ(x, s, z)−Hβ(x, s, z)} −GHn(x, s, z;β)‖ = O(n−1/6 log(n)d̃) almost surely.

The existence of the Gaussian process is ensured by the results of Massart (1989). Furthermore, by

the standard Taylor series expansion, we have

sup
β,u

∣∣∣∣ n−1

n∑
i=1

Yi(t)h
−1K̇h(β

′Zi − u)Zi −
∂E{Yi(t)|β′Zi = u}

∂β
fβ′Z(v)

∣∣∣∣= O(nε−1/2h−1 + h).

for any ε > 0. Similarly, we can show that

sup
β,u

∣∣∣∣ n−1

n∑
i=1

Ni(t)h
−1K̇h(β

′Zi − u)Zi −
∂E{Ni(t)|β′Zi = u}

∂β
fβ′Z(u)

∣∣∣∣= O(nε−1/2h−1 + h)

and supβ,u |n−1
∑n

i=1Ni(t)Kh(β
′Zi − u) − E{Ni(t)|β′Zi = u}fβ′Z(u)| = O{(n−1/2 + (nh)−1)nε + h2}.

Furthermore, using integration by parts we have

∂Λ̂u(β, t0)

∂β
=

∑n
i=1Ni(t0)h−1K̇h(β

′Zi − u)Zi∑n
i=1 Yi(t0)Kh(β

′Zi − u)

−
∫ t0

0

n−1

n∑
i=1

Ni(t)h
−1K̇h(β

′Zi − u)Zid

{
1

n−1
∑n

i=1 Yi(t)Kh(β
′Zi − u)

}

−
∫ t0

0

{
n−1

∑n
i=1 Yi(t)h

−1K̇h(β
′Zi − u)Zi

}
d {n−1

∑n
i=1Ni(t)Kh(β

′Zi − u)}

{n−1
∑n

i=1 Yi(t)Kh(β
′Zi − u)}2 .
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Thus ∂Λ̂u(β, t0)/∂β − ∂Λu(β, t0)/∂β can be bounded by

∣∣∣∣ ∑n
i=1Ni(t0)h

−1K̇h(β
′Zi − u)Zi∑n

i=1 Yi(t0)Kh(β
′Zi − u)

− ∂E{Ni(t0)|β′Zi = u}/∂β
E{Yi(t0)|β′Zi = u)}

∣∣∣∣
+

∫ t0

0

∣∣∣∣ 1

nh

n∑
i=1

Ni(t)K̇h(β
′Zi − u)Zi −

∂E{Ni(t)|β′Zi = u}
∂β

fβ′Z(u)

∣∣∣∣ d{ 1

n−1
∑n

i=1 Yi(t)Kh(β
′Zi − u)

}

+

∣∣∣∣ ∫ t0

0

∂E{Ni(t)|β′Zi = u}
∂β

fβ′Z(u)d

{
1

n−1
∑n

i=1 Yi(t)Kh(β
′Zi − u)

− 1

E{Yi(t)|β′Zi = u}fβ′V (u)

} ∣∣∣∣
+

∫ t0

0

∣∣∣∣ n−1
∑n

i=1 Yi(t)h
−1K̇h(β

′Zi − u)Zi{
n−1

∑n
i=1 Yi(t)Kh(β

′Zi − u)
}2 −

∂E{Yi(t)|β′Zi = u}/∂β
E{Yi(t)|β′Zi = u}2fβ′Z(u)

∣∣∣∣ d
{
n−1

n∑
i=1

Ni(t)Kh(β
′Zi − u)

}

+

∣∣∣∣ ∫ t0

0

∂E{Yi(t)|β′Zi − u)/∂β
E{Yi(t)|β′Zi = u}2fβ′Z(u)

d

{
n−1

n∑
i=1

Ni(t)Kh(β
′Zi − u)− E{Ni(t)|β′Zi = u}fβ′V (u)

} ∣∣∣∣
=O(nε−1/2h−1 + h) = op(1) for any ε > 0, where h = O(n−δ), δ ∈ (0, 1/2).

Therefore, (A·1) holds. It then follows that

I1 =

∫ {
∂Ŝu(β2, t0)

∂β
− ∂Su(β2, t0)

∂β

}
F̂ (β2, du)Op(|β2 − β1|)

=

∫ {
∂Ŝu(β2, t0)

∂β
− ∂Su(β2, t0)

∂β

}
{F (β2, du) +Op(n

1
2 )}Op(|β2 − β1|) = op(|β2 − β1|).

Next, we note that I2 =
∫
{Su(β2, t0)− Su(β1, t0)}{F̂ (β2, du)−F (β2, du)} = Op(n

−1/2|β2−β1|), and

I3 =

∫
Ŝu(β1, t0){F̂ (β2, du)− F̂ (β1, du)− F (β2, du) + F (β1, du)}

≤ sup
β
|Ŝ(β, t0)|

∫
|F̂ (β2, u)− F̂ (β1, u)− F (β2, u) + F (β1, u)|du = Op(n

−1/2|β2 − β1|1/2)

I4 = sup
β,u
|Ŝu(β1, t0)− Su(β1, t0)| ×Op(|β2 − β1|) = op({(nh)−1/2 log(n) + h2}|β2 − β1|).

where we used the fact that Ŝ(β1, t0) = Op(1) and sup|β1−β2|≤δ,u n
1/2|F̂ (β2, u)− F̂ (β1, u)−F (β2, u) +

F (β1, u)| = Op(δ
1/2). Therefore, n1/2(I1 +I2 +I3 +I4) is bounded by op(n

1/2|β2−β1|+Op(|β2−β1|1/2)
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for h = Op(n
−δ), δ ∈ (0, 1/2). This implies that

√
n{Ŝ(β2, t0)− Ŝ(β1, t0)} = op(n

1/2|β2 − β1|+Op(|β2 − β1|1/2).

Since this result is uniform for (β2,β1), we can let (β2,β1) = (β̂
∗
,β∗0) and obtain

√
n{Ŝ(β̂

∗
, t0)− Ŝ(β∗0, t0)} = op(1),

where we used the fact that |β̂
∗
− β∗0| = Op(n

−1/2). Therefore, the variability of β̂
∗

can be ignored in

making inferences on Ŝ(β̂
∗
, t0) and ŴZ(t0) is asymptotically equivalent to W̃Z(t0) ≡

√
n{Ŝ(β∗0, t0) −

S(t0)}. Note that the derivations above only requires h = O(n−δ) with δ ∈ (0, 1/2). Intuitively, the

reason β̂
∗

does not contribute any additional noise to Ŝ(β̂
∗
, t0) is due to the fact that the limiting

quantity S(β, t0) is in fact free of β. Our derivations essentially establish the stochastic equicontinuity

property of n
1
2{Ŝ(β, t0)− S(β, t0)}. As a result,

n
1
2{Ŝ(β̂

∗
, t0)− Ŝ(β∗0, t0)} = n

1
2{S(β̂

∗
, t0)− S(β∗0, t0)}+ op(1)

= n
1
2 (β̂

∗
− β∗0)T

∂S(β, t0)

∂β
|β=β∗0 + op(1).

Since S(β, t0) is free of β, ∂S(β, t0)/∂β = 0 and hence n
1
2{Ŝ(β̂

∗
, t0) − Ŝ(β∗0, t0)} = op(1). Using the

same arguments, it can be shown ŴW(t | t0) ≈ W̃W(t | t0), where W̃W(t | t0) =
√
n{Ŝ(β0, t|t0)−S(t |

t0)}. Using a Taylor series expansion, one can show that

ŴLM(t, t0) ≈ S(t0)W̃W(t|t0) + S(t|t0)W̃Z(t0). (A·2)

It follows that ŴLM(t, t0) is asymptotically equivalent to W̃LM(t, t0) ≡
√
n{ŜLM(β∗0,β0, t) − S(t)}.

Hence, we focus on the asymptotic expansions of W̃Z(t0), W̃(t | t0), and W̃LM(t, t0) with β∗0 and β0 as
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given.

Supplementary Appendix B: Relationship to Augmentation Approach

We now examine the relationship between our proposed estimation procedure and an augmentation

approach. In Supplementary Appendix B.1 we show that our proposed estimate of survival can be

expressed in the form of the Kaplan Meier estimate of survival plus an augmentation term composed

of a martingale residual for censoring. In Supplementary Appendix B.2 we investigate the choice

of basis function, H(Zi), when estimating ∆̂AUG(t) i.e. for augmentation using covariates which are

independent of treatment assignment. We show that an explicit form of the optimal basis can be

obtained and estimated.

Supplementary Appendix B.1: Censoring Augmentation Term

To compare ŜLM(β̂
∗
, β̂, t0) to the KM estimate, we may approximate

√
n{ŜKM(t)− S(t)} by

n−1/2

n∑
i=1

{
I(XLi > t0)SC(t0)−1

[
S(t|t0)

∫ t

t0

dMCi
(u|t0)

π(u|t0)
+
I(Xi > t)

SC(t|t0)
− S(t|t0)

]
+ S(t|t0)

[
S(t0)

∫ t0

0

dMCi
(u)

π(u)
+
I(Ti > t,Ci > t0)

SC(t0)
− S(t0)

]}

This, together with (I.5) in Appendix I, implies that ŜLM(β̂
∗
, β̂, t) = ŜKM(t) + n−1

t0

∑
i∈Ωt0

γi1(t, t0) +

n−1
∑n

i=1 γj2(t, t0) + op(n
− 1

2 ), where

γi1(t, t0) = S(t0)

∫ t

t0

[
SUi

(t | t0)
dMCi

(s|t0)

πUi
(s|t0)

− S(t|t0)
dMCi

(u|t0)

π(u|t0)

]
γi2(t, t0) = S(t|t0)

∫ t0

0

[
SU∗i (t0)

dMCi
(s)

πU∗i (s)
− S(t0)

dMCi
(u)

π(u)

]
.

Thus, our complete proposed estimator can be expressed as the KM estimator plus an augmentation

term composed of two quantities, one involving censoring occurring before t0 and the other involving
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censoring occurring between t0 and t.

Supplementary Appendix B.2: Covariate Augmentation Term for Estimating Treatment Difference

We next derive the optimal basis for augmenting ∆̂LM(t) leveraging information from the randomized

treatment assignment. Since only Z, which is measured at baseline, is independent of treatment

assignment, G, (Assumption A.2) we only consider the class of functions {H(Z, t)} and find the optimal

H, Hopt, to minimize var{∆̂LM(t)− n−1
∑n

i=1{I(Gi = B)− p}H(Zi, t)}. To approximate Hopt, we first

note that D̂LM(t) = n
1
2{∆̂LM(t)−∆(t)} is asymptotically equivalent to

n−
1
2

n∑
i=1

[
{φ1i,A(t, t0) + φ2i,A(t, t0)}I(Gi = A)

(1− p)
− {φ1i,B(t, t0) + φ2i,B(t, t0)}I(Gi = B)

p

]
=n−

1
2

n∑
i=1

[φ1i,A(t, t0) + φ2i,A(t, t0)− φ1i,B(t, t0)− φ2i,B(t, t0)− gi(t, t0){I(Gi = B)− p}]

where

gi(t, t0) =
φ1i,A(t, t0) + φ2i,A(t, t0)

1− p
+
φ1i,B(t, t0) + φ2i,B(t, t0)

p

It is straightforward to see that

Hopt(Zi, t) = E{gi(t, t0) | Zi} =
∑

G∈{A,B}

(1− p)−I(G=A)p−I(G=B)E{φ1i(t, t0) + φ2i(t, t0) | Zi,Gi = G}.

To derive an expression for Hopt, we note that

E

{
I(XLi > t0)SUi

(t | t0)

∫ t

t0

dMCi
(s|t0)

πUi
(s|t0)

| Zi
}

= 0 = E

{
SU∗i (t0)

∫ t0

0

dMCi
(s)

πU∗i (s)
| Zi
}
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since E{MCi(s) | Zi,Gi} = 0 = E{MCi
(s|t0) | Ui, XLi > t0} = 0. Therefore,

E {φ1i(t, t0) | Zi,Gi} = E

[
I(XLi > t0)

SC,Gi(t0)

{
I(XLi > t)

SC,Gi(t|t0)
− SGi(t|t0)

}
| Zi,Gi

]
= {SZi,Gi(t | t0)− SGi(t|t0)}SZi,Gi(t0)

E {φ2i(t, t0) | Zi,Gi} = E

{
SG(t|t0)

[
I(XLi > t0)

SC,Gi(t0)
− SGi(t0)

]
| Zi,Gi

}
= SGi(t|t0) {SZi,Gi(t0)− SG(t0)}

where SC,G(t) = P (C > t | G), SZ,G(t, t0) = P (TL > t | TL > t0,Z,G) and SZ,G(t0) = P (TL > t0 | Z,G).

Therefore, Hopt can be chosen as

Hopt(Z, t) = −
∑
G∈A,B

SZ,G(t)− SG(t)
(1− p)I(G=A)pI(G=B)

(B·1)

Thus, this is the optimal basis for augmenting the proposed estimator. Note that SZ,A(t) for patients

with Gi = B is the survival probability for his/her counterfactual survival time in treatment A.

Supplementary Appendix C: Interval Estimation via Resampling

Though we have derived the form of the variance of our proposed estimator in Appendix II, estimating

this variance explicitly is computationally involved. To overcome this issue, we construct confidence

intervals(CIs) using a perturbation-resampling method (Park & Wei, 2003; Cai et al., 2005; Tian et al.,

2007) to approximate the distributions of the aforementioned estimators. Specifically, let {V(b) =

(V
(b)

1 , ..., V
(b)
n )T, b = 1, ...B} be n×B independent copies of a positive random variable V from a known

distribution with unit mean and unit variance. Let β̂
(b)

be the solution to

∑
i∈Ωt0

∫ ∞
t0

V
(b)
i

Wi −
∑

j∈Ωt0
V

(b)
j Yj(z)eβ

TWjWj∑
j∈Ωt0

V
(b)
j Yj(z)eβTWj

 dNi(z) = 0.
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Let Ŝ(b)(t | t0) =

∑
i∈Ωt0

V
(b)
i exp{−Λ̂

(b)

Ûi
(t)}∑

i∈Ωt0
V

(b)
i

, Λ̂
(b)

Ûi
(t) =

∫ t
t0

∑
i∈Ωt0

V
(b)
i Kh(D̂

(b)
ui )dNi(z)∑

i∈Ωt0
V

(b)
i Kh(D̂ui)Yi(z)

, D̂
(b)
ui = Û

(b)
i − u and Û

(b)
i =

β̂
(b)T

Wi. We may obtain Ŝ(b)(t0) by replacing Wi = Zi throughout and using all patients and let

Ŝ
(b)
LM(t) ≡ Ŝ(b)(t | t0)Ŝ(b)(t0). Then one can estimate the variance of ŜLM(t) as the empirical variance

of {Ŝ(b)
LM(t), b = 1, ..., B}. This procedure can be used to obtain Ŝ

(b)
LM,A(t), Ŝ

(b)
LM,B(t), and ∆̂

(b)
LM(t) =

Ŝ
(b)
LM,A(t) − Ŝ

(b)
LM,B(t) for b = 1, ...B. Then one can estimate σ̂(∆̂LM(t)) as the empirical variance of

∆̂
(b)
LM(t). Let â =

∑
i{I(Gi = B)− p}Ĥopt(Zi, t). To examine whether our proposed procedure benefits

from augmentation, we examine ∆̂AUG(t) by obtaining ε̂ as v̂ar(â)−1ĉov{∆̂LM(t), â} where v̂ar(â) is

the empirical variance of â(b) and ĉov{∆̂LM(t), â} is the empirical covariance of ∆̂
(b)
LM(t) and â(b) for

b = 1, ...B and â(b) =
∑

i V
(b)
i {I(Gi = B) − p}Ĥopt(Zi, t). To construct CIs, one can either use the

empirical quantiles of the perturbed samples or a normal approximation. Similar procedures can be

used to obtain variance and interval estimates for ŜKM(t). The validity of the perturbation-resampling

procedure can be shown using similar arguments as in Cai et al. (2010) and Zhao et al. (2010) since

the distribution of
√
n{ŜLM(t)−S(t)} can be approximated by the distribution of

√
n{Ŝ(b)

LM(t)− ŜLM(t)}

conditional on the observed data.
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